Predicting anomaly conditions of energy equipment using neural networks
نویسندگان
چکیده
In modern conditions for complex thermal power facilities, the issue of developing methods predicting equipment failures is especially relevant. Methods based on intellectualization diagnostic systems and allowing to obtain predictive models use both current data received in real time from measuring retrospective information are considered promising. Intellectualization system terms ability learn allows quickly adjust parameters forecasting under changing operation, determine new deadlines scheduled repairs minimize downtime. A limitation incompleteness failure statistics, ie when rare or non-existent. Such diagnostics energy equipment, contributes a more environmentally friendly production.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Predicting financial statement fraud using fuzzy neural networks
Fraud is a common phenomenon in business, and according to Section 24 of the Iranian Auditing Standards, it is the fraudulent act of one or more managers, employees, or third parties to derive unfair advantage and any intentional or unlawful conduct. Financial statements are a means of transmitting confidential management information about the<br ...
متن کاملDeveloping an Artificial Neural Networks Model for Predicting Output Energy and GHG Emission of Strawberry Production
متن کامل
Anomaly Detection in Drilling Using Neural Networks
With increasing competitive pressures, manufacturing systems in the automotive industry are being driven more and more aggressively. The pressures imposed on the processes and lack of system 'slack' have led to increased use of Tool Condition Monitoring systems. In parallel, there has been wide-ranging research in academia. However, a closer examination shows that there has been very little mig...
متن کاملAnomaly Detection using One-Class Neural Networks
We propose a one-class neural network (OC-NN) model to detect anomalies in complex data sets. OC-NN combines the ability of deep networks to extract progressively rich representation of data with the one-class objective of creating a tight envelope around normal data. The OC-NN approach breaks new ground for the following crucial reason: data representation in the hidden layer is driven by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S web of conferences
سال: 2021
ISSN: ['2555-0403', '2267-1242']
DOI: https://doi.org/10.1051/e3sconf/202128009005